题目内容
一个长、宽、高都互不相等的长方体的主视图、俯视图、左视图都是______.
计算:a×a= .
如图所示,在平面直角坐标系中,A(-1,5)、B(-1,0)、C(-4,3)
(1) 求出△ABC的面积
(2) 在图形中作出△ABC关于y轴的对称图形△A1B1C1,并写出A1、B1、C1的坐标
(3) 是否存在一点P到AC、AB的距离相等,同时到点A、点B的距离也相等.若存在保留作图痕迹标出点P的位置,并简要说明理由;若不存在,请说明理由
下列长度的线段能组成三角形的是( )
A. 3、4、8 B. 5、6、11 C. 5、6、10 D. 3、5、10
如图都是由7个小立方体搭成的几何体,从不同方向看几何体,分别画出它们的主视图、左视图与俯视图,并在小正方形内填上表示该位置的小正方体的个数.
若长度为3米的木杆竖立时,它在阳光下的影子长为1米,则阳光下的影子长度为10米的楼房的高度为( )
A. 米 B. 米 C. 米或米 D. 米
如图,△ABC是等边三角形,点D在边AC上(点D不与点A,C重合),点E是射线BC上的一个动点(点E不与点B,C重合),连接DE,以DE为边作等边△DEF,连接CF.
(1)如图1,当DE的延长线与AB的延长线相交,且点C,F在直线DE的同侧时,过点D作DG∥AB,DG交BC于点G,求证:CF=EG;
(2)如图2,当DE的反向延长线与AB的反向延长线相交,且点C,F在直线DE的同侧时,求证:CD=CE+CF;
(3)如图3,当DE的反向延长线与线段AB相交,且点C,F在直线DE的异侧时,猜想CD、CE、CF之间的等量关系,并说明理由.
如图,在Rt△ABC中,∠A=90°,∠C=30°,∠ABC的平分线BD交AC于点D,若AD=3,则BD+AC=( )
A. 10 B. 15 C. 20 D. 30.
如图,过直线l外一点A,作直线l的垂线,可以作__________条.