题目内容

抛物线y=x2-2x-3与x轴两交点间的距离是


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1
A
分析:求出抛物线与x轴的交点坐标,即可根据坐标求出两点间的距离.
解答:当y=0时,x2-2x-3=0,
解得(x+1)(x-3)=0,
x1=-1,x2=3.
与x轴的交点坐标为(-1,0),(3,0).
则抛物线与x轴两交点间的距离为3-(-1)=4.
故选A.
点评:本题考查了抛物线与x轴的交点,令y=0,将函数转化为关于x的一元二次方程是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网