题目内容
方程4(2x-1)2-25(x+1)2=0的解为
- A.x1=x2=-7
- B.

- C.

- D.

B
分析:首先移项可得4(2x-1)2=25(x+1)2,再两边直接开平方得:2(2x-1)=±5(x+1),然后解一元一次方程即可.
解答:4(2x-1)2-25(x+1)2=0,
移项得:4(2x-1)2=25(x+1)2,
两边直接开平方得:2(2x-1)=±5(x+1),
2(2x-1)=5(x+1),2(2x-1)=-5(x+1),
解两个方程得:x1=-7,x2=-
.
故选:B.
点评:此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.
分析:首先移项可得4(2x-1)2=25(x+1)2,再两边直接开平方得:2(2x-1)=±5(x+1),然后解一元一次方程即可.
解答:4(2x-1)2-25(x+1)2=0,
移项得:4(2x-1)2=25(x+1)2,
两边直接开平方得:2(2x-1)=±5(x+1),
2(2x-1)=5(x+1),2(2x-1)=-5(x+1),
解两个方程得:x1=-7,x2=-
故选:B.
点评:此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.
练习册系列答案
相关题目