题目内容
若关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则实数k的取值范围是( )
A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠0
综合与探究:如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,过点B作线段BC⊥x轴,交直线y=﹣2x于点C.
(1)求该抛物线的解析式;
(2)求点B关于直线y=﹣2x的对称点B′的坐标,判定点B′是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段B′C于点D,是否存在这样的点P,使四边形PBCD是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
抛物线y=x2﹣mx﹣m2+1的图象过原点,则m为( )
A.0 B.1 C.﹣1 D.±1
如图,△ABC的顶点是正方形网格的格点,则tanA的值为 .
如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是( )
A. B. C. D.
如图,在△ABC中,点D为BC边的中点,以点D为顶点的∠EDF的两边分别与边AB,AC交于点E,F,且∠EDF与∠A互补.
(1)如图1,若AB=AC,且∠A=90°,则线段DE与DF有何数量关系?请直接写出结论;
(2)如图2,若AB=AC,那么(1)中的结论是否还成立?若成立,请给出证明;若不成立,请说明理由;
(3)如图3,若AB:AC=m:n,探索线段DE与DF的数量关系,并证明你的结论.
在“爱满扬州”慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.
(1)这50名同学捐款的众数为 元,中位数为 元;
(2)求这50名同学捐款的平均数;
(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数.
已知抛物线y=(m+1)x2+2的顶点是此抛物线的最高点,那么m的取值范围是( )
A.m≠0 B.m≠﹣1 C.m>﹣1 D.m<﹣1
如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为 m(结果保留根号).