题目内容
如图,数轴上表示的不等式的解为__________.
如图,⊙O的半径为1,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则弦BC的长为( )
A. B. 2 C. 3 D. 1.5
在△ABC中,点D、E分别在边AC、BC上(不与点A、B、C重合),点P是直线AB上的任意一点(不与点A、B重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.
(1)如图,当点P在线段AB上运动,且n=90°时
①若PD∥BC,PE∥AC,则m=_____;
②若m=50°,求x+y的值.
(2)当点P在直线AB上运动时,直接写出x、y、m、n之间的数量关系.
如图,在Rt△ABC中,∠BAC=90°,AB=AC,点A,点C分别在直线a,b上,且a∥b.若∠1=60°,则∠2的度数为( )
A. 105° B. 75° C. 135° D. 155°
如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是( )
A. 14 B. 17 C. 22 D. 26
在平面直角坐标系中,抛物线与x轴交于A、B(A点在B点的左侧)与y轴交于点C。
(1)如图1,连接AC、BC,求△ABC的面积。
(2)如图2:
①过点C作CR∥x轴交抛物线于点R,求点R的坐标;
②点P为第四象限抛物线上一点,连接PC,若∠BCP=2∠ABC时,求点P的坐标。
(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=,连接KB并延长交抛物线于点Q,求PQ的长。
先化简,后求值:,其中。
的相反数是( )
A. B. C. D. 5
计算:.