题目内容
对于条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等;以上能断定两直角三角形全等的有
- A.1个
- B.2个
- C.3个
- D.4个
D
分析:根据直角三角形的判定定理进行选择即可.
解答:①两条直角边对应相等,根据“SAS”,正确;
②斜边和一锐角对应相等,根据“AAS”,正确;
③斜边和一直角边对应相等,根据“HL”,正确;
④直角边和一锐角对应相等,根据“ASA”或“AAS”,正确;
故选D.
点评:本题考查了直角三角形的判定定理,除HL外,一般三角形的全等有四种方法,做题时要结合已知条件与全等的判定方法逐一验证.
分析:根据直角三角形的判定定理进行选择即可.
解答:①两条直角边对应相等,根据“SAS”,正确;
②斜边和一锐角对应相等,根据“AAS”,正确;
③斜边和一直角边对应相等,根据“HL”,正确;
④直角边和一锐角对应相等,根据“ASA”或“AAS”,正确;
故选D.
点评:本题考查了直角三角形的判定定理,除HL外,一般三角形的全等有四种方法,做题时要结合已知条件与全等的判定方法逐一验证.
练习册系列答案
相关题目