题目内容
如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为( )
A.100° B.90° C.80° D.70°
已知∠ABC=90°,AB=BC,D为AC上的一点,分别过C点,A点作CE⊥BD于E点,AF⊥BD于F.若EC=5,EF=2,求AF的长.
下列说法正确的是( )
A.x2+1是二次单项式 B.﹣m2的次数是2,系数是1
C.﹣23πab的系数是﹣23 D.数字0也是单项式
△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.
(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;
(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.
计算:25的平方根是 .
下列各点中,在第三象限的是( )
A.(2,3) B.(2,﹣1) C.(﹣2,6) D.(﹣1,﹣5)
先化简再求值
(1)(4a2﹣3a)﹣(1﹣4a+4a2),其中a=﹣2
(2)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中m=1,n=﹣2.
甲看乙的方向是北偏东30°,那么乙看甲的方向是( )
A.南偏东60° B.南偏西60° C.南偏东30° D.南偏西30°
有四张正面分别标有﹣1,0,1,2的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中取出一张,将卡片上的数字记为a,不放回,再取出一张,将卡片上的数字记为b,设P点的坐标为(a,b).如图,点P落在抛物线y=x2与直线y=x+2所围成的封闭区域内(图中含边界的阴影部分)的概率是 .