题目内容
如图,点A、B、C、D分别是⊙O上四点,∠ABD=20°,BD是直径,则∠ACB=______.
规定一种运算:a*b=ab+a-b,其中a、b为有理数,则(-3)*5的值为( )
A. -17 B. -13 C. -23 D. -7
如图,在△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.给出下列结论:①∠EAB=∠FAC;②AF=AC;③∠C=∠EFA;④AD=AC.其中正确的结论是_____(填序号).
以下列各组数据为边长,能构成三角形的是:
A. 4,4,8 B. 2,4,7 C. 4,8,8 D. 2,2,7
已知P(﹣3,m)和 Q(1,m)是抛物线y=x2+bx﹣3上的两点.
(1)求b的值;
(2)将抛物线y=x2+bx﹣3的图象向上平移k(是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值;
(3)将抛物线y=x2+bx﹣3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n的取值范围.
已知α是锐角,且点A(,a),B(sin30°+cos30°,b), C(-m2+2m-2,c)都在二次函数y=-x2+x+3的图象上,那么a、b、c的大小关系是( )
A. a<b<c B. a<c<b C. b<c<a D. c<b<a
已知抛物线y=-x2+2mx-m2+的顶点为P.
(1)求证:不论m取何值,点P始终在同一个反比例函数图象上?
(2)若抛物线与x轴交于A、B两点,当m为何值时,线段AB长等于8?
(3)该抛物线上是否存在一点Q,使得△OPQ是以点P为顶点的等腰直角三角形?若不存在,请说明理由;若存在,请求出m的值.
点(2,3)关于原点对称的点的坐标是_____.
如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?