题目内容

如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连结DE,则DE的最小值为________.

4.8
分析:连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.
解答:解:∵Rt△ABC中,∠C=90°,AC=8,BC=6,
∴AB=10,
连接CP,
∵PD⊥AC于点D,PE⊥CB于点E,
∴四边形DPEC是矩形,
∴DE=CP,
当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,
∴DE=CP==4.8,
故答案为4.8.
点评:本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE的最小值转化为其相等线段CP的最小值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网