题目内容
如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为_____.
如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是 .(只填写一个条件,不另外添加字母和线段)
比较大小: ﹣3_____cos45°(填“>”“=”或“<”).
问题情境:如图1,在等边△ABC中,点P在△ABC内,且PA=3,PB=5,PC=4,求∠APC的度数?
小明在解决这个问题时,想到了以下思路:如图2,把△APC绕着点A顺时针旋转,使点C旋转到点B,得到△ADB,连结DP.
请你在小明的思路提示下,求出∠APC的度数.
思路应用:如图3,△ABC为等边三角形,点P在△ABC外,且PA=6,PC=8,∠APC=30°,求PB的长;
思路拓展:如图4,矩形ABCD中,AB=BC,P为矩形ABCD内一点,PA:PB:PC=2:1:2,则∠APB= °.(直接填空)
如图,已知∠AOB=120°,点A绕点O顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,…,连接AA1,AA2,AA3…,依此作法,则∠AAnAn+1等于______度.(用含n的代数式表示,n为正整数)
如图,在△ABC中,AB>AC,分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD,若AB=7,AC=5,则△ACD的周长为( )
A. 2 B. 12 C. 17 D. 19
﹣的绝对值为( )
A. ﹣2018 B. ﹣ C. D. 2018
点M到x轴的距离为3,到y的距离为4,则点M的坐标为
A、(3,4)
B、(4,3)
C、(4,3),(-4,3)
D、(4,3),(-4,3),(-4,-3),(4,-3)
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.