ÌâÄ¿ÄÚÈÝ
Èçͼ1£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¶þ´Îº¯Êýy=ax2+bx+c£¨a£¾0£©µÄͼÏó¶¥µãΪD£¬ÓëyÖá½»ÓÚµãC£¬ÓëxÖá½»ÓÚµãA¡¢B£¬µãAÔÚÔµãµÄ×ó²à£¬µãBµÄ×ø±êΪ£¨3£¬0£©£¬OB=OC£¬tan¡ÏACO=£¨1£©ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÈôƽÐÐÓÚxÖáµÄÖ±ÏßÓë¸ÃÅ×ÎïÏß½»ÓÚµãM¡¢N£¬ÇÒÒÔMNΪֱ¾¶µÄÔ²ÓëxÖáÏàÇУ¬Çó¸ÃÔ²µÄ°ë¾¶³¤¶È£»
£¨3£©Èçͼ2£¬ÈôµãG£¨2£¬y£©ÊǸÃÅ×ÎïÏßÉÏÒ»µã£¬µãPÊÇÖ±ÏßAGÏ·½µÄÅ×ÎïÏßÉϵÄÒ»¶¯µã£¬µ±µãPÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬¡÷AGPµÄÃæ»ý×î´ó£¿Çó´ËʱµãPµÄ×ø±êºÍ¡÷AGPµÄ×î´óÃæ»ý£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÓɵãBµÄ×ø±êΪ£¨3£¬0£©£¬OB=OC£¬¼´¿ÉÇóµÃµãCµÄ×ø±ê£¬ÓÖÓÉtan¡ÏACO=
£¬¼´¿ÉÇóµÃµãAµÄ×ø±ê£¬È»ºóÉèÁ½µãʽy=a£¨x+1£©£¨x-3£©£¬½«µãC´úÈ룬¼´¿ÉÇóµÃÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©·Ö±ð´Óµ±Ö±ÏßMNÔÚxÖáÉÏ·½Ê±Óëµ±Ö±ÏßMNÔÚxÖáÏ·½Ê±È¥·ÖÎö£¬È»ºóÓÉËùÇóÔ²µÄÔ²ÐÄÔÚÅ×ÎïÏߵĶԳÆÖáx=1ÉÏ£¬¼´¿ÉÇóµÃµãµÄ×ø±ê£¬ÓÖÓɵãÔÚ¶þ´Îº¯ÊýµÄͼÏóÉÏ£¬¼´¿ÉÇóµÃ¸ÃÔ²µÄ°ë¾¶³¤¶È£»
£¨3£©Ê×ÏȹýµãP×÷yÖáµÄƽÐÐÏßÓëAG½»ÓÚµãQ£¬È»ºóÇóµÃµãGµÄ×øÓëÖ±ÏßAGµÃ·½³Ì£¬È»ºóÓÉS¡÷AGP=S¡÷APQ+S¡÷GPQ=
PQ•£¨Gºá×ø±ê-Aºá×ø±ê£©£¬ÀûÓöþ´Îº¯ÊýµÄ×îÖµÎÊÌ⣬¼´¿ÉÇóµÃ´ËʱµãPµÄ×ø±êºÍ¡÷AGPµÄ×î´óÃæ»ý£®
½â´ð£º½â£º£¨1£©ÓÉOC=OB=3£¬¿ÉÖªµãC×ø±êÊÇ£¨0£¬-3£©£¬
Á¬½ÓAC£¬ÔÚRt¡÷AOCÖУ¬
¡ßtan¡ÏACO=
£¬
¡àOA=OC×tan¡ÏACO=3×
=1£¬
¹ÊA£¨-1£¬0£©£¬¡£¨3·Ö£©
ÉèÕâ¸ö¶þ´Îº¯ÊýµÄ±í´ïʽΪ£ºy=a£¨x+1£©£¨x-3£©£¬
½«C£¨0£¬-3£©´úÈëµÃ£º-3=a£¨0+1£©£¨0-3£©£¬
½âµÃ£ºa=1£¬
¡àÕâ¸ö¶þ´Îº¯ÊýµÄ±í´ïʽΪ£ºy=£¨x+1£©£¨x-3£©=x2-2x-3£®¡£¨5·Ö£©
£¨2£©¢Ùµ±Ö±ÏßMNÔÚxÖáÉÏ·½Ê±£¬ÉèËùÇóÔ²µÄ°ë¾¶ÎªR£¨R£¾0£©£¬ÉèMÔÚNµÄ×ó²à£¬
¡ßËùÇóÔ²µÄÔ²ÐÄÔÚÅ×ÎïÏߵĶԳÆÖáx=1ÉÏ£¬
¡àN£¨R+1£¬R£©´úÈëy=x2-2x-3ÖеãºR=£¨R+1£©2-2£¨R+1£©-3£¬
½âµÃR=
£®¡£¨10·Ö£©
¢Úµ±Ö±ÏßMNÔÚxÖáÏ·½Ê±£¬ÉèËùÇóÔ²µÄ°ë¾¶Îªr£¨r£¾0£©£¬ÓÉ¢Ù¿ÉÖªN£¨r+1£¬-r£©£¬´úÈëÅ×ÎïÏß·½³Ìy=x2-2x-3£¬¿ÉµÃ-r=£¨r+1£©2-2£¨r+1£©-3£¬
½âµÃ£ºr=
£®¡£¨13·Ö£©
£¨3£©¹ýµãP×÷yÖáµÄƽÐÐÏßÓëAG½»ÓÚµãQ£¬
°ÑG£¨2£¬y£©´úÈëÅ×ÎïÏߵĽâÎöʽy=x2-2x-3£¬µÃG£¨2£¬-3£©£®¡£¨15·Ö£©
ÓÉA£¨-1£¬0£©¿ÉµÃÖ±ÏßAGµÄ·½³ÌΪ£ºy=-x-1£¬¡£¨16·Ö£©
ÉèP£¨x£¬x2-2x-3£©£¬ÔòQ£¨x£¬-x-1£©£¬
¡àPQ=-x2+x+2£¬
S¡÷AGP=S¡÷APQ+S¡÷GPQ=
PQ•£¨Gºá×ø±ê-Aºá×ø±ê£©=
£¨-x2+x+2£©×3=-
£¨x-
£©2+
£¬¡£¨18·Ö£©
µ±x=
ʱ£¬¡÷APGµÄÃæ»ý×î´ó£¬¡£¨19·Ö£©
´ËʱPµãµÄ×ø±êΪ£¨
£¬-
£©£¬¡÷APGµÄÃæ»ý×î´óֵΪ
£®¡£¨20·Ö£©
µãÆÀ£º´ËÌ⿼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬µãÓ뺯ÊýµÄ¹ØÏµ£¬Èý½Çº¯ÊýµÄÐÔÖÊÒÔ¼°Ô²µÄÇÐÏßµÄÐÔÖʵÈ֪ʶ£®´ËÌâ×ÛºÏÐÔºÜÇ¿£¬ÄѶȽϴ󣬽âÌâµÄ¹Ø¼üÊÇ×¢ÒâÊýÐνáºÏ˼Ï룬·½³Ì˼ÏëÓë·ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Óã®
£¨2£©·Ö±ð´Óµ±Ö±ÏßMNÔÚxÖáÉÏ·½Ê±Óëµ±Ö±ÏßMNÔÚxÖáÏ·½Ê±È¥·ÖÎö£¬È»ºóÓÉËùÇóÔ²µÄÔ²ÐÄÔÚÅ×ÎïÏߵĶԳÆÖáx=1ÉÏ£¬¼´¿ÉÇóµÃµãµÄ×ø±ê£¬ÓÖÓɵãÔÚ¶þ´Îº¯ÊýµÄͼÏóÉÏ£¬¼´¿ÉÇóµÃ¸ÃÔ²µÄ°ë¾¶³¤¶È£»
£¨3£©Ê×ÏȹýµãP×÷yÖáµÄƽÐÐÏßÓëAG½»ÓÚµãQ£¬È»ºóÇóµÃµãGµÄ×øÓëÖ±ÏßAGµÃ·½³Ì£¬È»ºóÓÉS¡÷AGP=S¡÷APQ+S¡÷GPQ=
½â´ð£º½â£º£¨1£©ÓÉOC=OB=3£¬¿ÉÖªµãC×ø±êÊÇ£¨0£¬-3£©£¬
Á¬½ÓAC£¬ÔÚRt¡÷AOCÖУ¬
¡ßtan¡ÏACO=
¡àOA=OC×tan¡ÏACO=3×
¹ÊA£¨-1£¬0£©£¬¡£¨3·Ö£©
ÉèÕâ¸ö¶þ´Îº¯ÊýµÄ±í´ïʽΪ£ºy=a£¨x+1£©£¨x-3£©£¬
½«C£¨0£¬-3£©´úÈëµÃ£º-3=a£¨0+1£©£¨0-3£©£¬
½âµÃ£ºa=1£¬
¡àÕâ¸ö¶þ´Îº¯ÊýµÄ±í´ïʽΪ£ºy=£¨x+1£©£¨x-3£©=x2-2x-3£®¡£¨5·Ö£©
£¨2£©¢Ùµ±Ö±ÏßMNÔÚxÖáÉÏ·½Ê±£¬ÉèËùÇóÔ²µÄ°ë¾¶ÎªR£¨R£¾0£©£¬ÉèMÔÚNµÄ×ó²à£¬
¡ßËùÇóÔ²µÄÔ²ÐÄÔÚÅ×ÎïÏߵĶԳÆÖáx=1ÉÏ£¬
¡àN£¨R+1£¬R£©´úÈëy=x2-2x-3ÖеãºR=£¨R+1£©2-2£¨R+1£©-3£¬
½âµÃR=
¢Úµ±Ö±ÏßMNÔÚxÖáÏ·½Ê±£¬ÉèËùÇóÔ²µÄ°ë¾¶Îªr£¨r£¾0£©£¬ÓÉ¢Ù¿ÉÖªN£¨r+1£¬-r£©£¬´úÈëÅ×ÎïÏß·½³Ìy=x2-2x-3£¬¿ÉµÃ-r=£¨r+1£©2-2£¨r+1£©-3£¬
½âµÃ£ºr=
£¨3£©¹ýµãP×÷yÖáµÄƽÐÐÏßÓëAG½»ÓÚµãQ£¬
°ÑG£¨2£¬y£©´úÈëÅ×ÎïÏߵĽâÎöʽy=x2-2x-3£¬µÃG£¨2£¬-3£©£®¡£¨15·Ö£©
ÓÉA£¨-1£¬0£©¿ÉµÃÖ±ÏßAGµÄ·½³ÌΪ£ºy=-x-1£¬¡£¨16·Ö£©
ÉèP£¨x£¬x2-2x-3£©£¬ÔòQ£¨x£¬-x-1£©£¬
¡àPQ=-x2+x+2£¬
S¡÷AGP=S¡÷APQ+S¡÷GPQ=
µ±x=
´ËʱPµãµÄ×ø±êΪ£¨
µãÆÀ£º´ËÌ⿼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬µãÓ뺯ÊýµÄ¹ØÏµ£¬Èý½Çº¯ÊýµÄÐÔÖÊÒÔ¼°Ô²µÄÇÐÏßµÄÐÔÖʵÈ֪ʶ£®´ËÌâ×ÛºÏÐÔºÜÇ¿£¬ÄѶȽϴ󣬽âÌâµÄ¹Ø¼üÊÇ×¢ÒâÊýÐνáºÏ˼Ï룬·½³Ì˼ÏëÓë·ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿