题目内容

作业宝如图,把长方形ABCD沿AC折叠,AD落在AD′处,AD′交BC于点E,已知AB=2cm,BC=4cm.(长方形的对边相等,四个角都为直角)
(1)求证:AE=EC;   
(2)求EC的长;      
(3)求重叠部分的面积.

解:(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠B=90°,AD∥BC,
∴∠DAC=∠BCA.
∵△ADC与△AD′C关于AC成轴对称
∴△ADC≌△AD′C,
∴∠DAC=∠D′AC,
∴∠D′AC=∠ACB,
∴AE=EC;

(2)∵AB=2cm,BC=4cm,
∴CD=2cm,AD=4cm.
设EC=x,就有AE=x,BE=4-x,在Rt△ABE中,由勾股定理,得
4+(4-x)2=x2
解得:x=2.5.
答:EC的长为2.5cm;

(3)∵S△AEC=
S△AEC==2.5cm2
答:重叠部分的面积为2.5cm2
分析:(1)根据轴对称的性质和矩形的性质就可以得出∠EAC=∠ECA,就可以得出AE=CE,
(2)设EC=x,就有AE=x,BE=4-x,在Rt△ABE中,由勾股定理就可以求出结论;
(3)根据(2)的结论直接根据三角形的面积公式就可以求出结论.
点评:本题考查了矩形的性质的运用,勾股定理的运用,轴对称的性质的运用,平行线的性质的运用,解答时运用勾股定理求出EC的值是关键.
练习册系列答案
相关题目
(2012•盐都区一模)问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.
解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
(1)已知:多项式M=2a2-a+1,N=a2-2a.试比较M与N的大小.
(2)已知:如图2,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a<b<c,现将△ABC 补成长方形,使得△ABC的两个顶
点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上.
①这样的长方形可以画
3
3
个;
②所画的长方形中哪个周长最小?为什么?
拓展延伸
已知:如图3,锐角△ABC(其中BC为a,AC为b,AB为c)三边满足a<b<c,画其BC边上的内接正方形EFGH,使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?


【问题提出】我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
【问题解决】如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:

∵a≠b,∴>0.
∴M-N>0.∴M>N.
【类比应用】(1)已知:多项式M =2a2-a+1 ,N =a2-2a .
试比较M与N的大小.
(2)已知:如图2,锐角△ABC (其中BC为a ,AC为 b,
AB为c)三边满足a <b < c ,现将△ABC 补成长方形,
使得△ABC的两个顶点为长方形的两个端点,第三个顶点落
在长方形的这一边的对边上。
 
①这样的长方形可以画     个;
②所画的长方形中哪个周长最小?为什么?
【拓展延伸】 已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网