题目内容
(本题6分)如图:∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E,求证:∠E=∠A.
先化简再求值:(4a2-3a)-(2a2+a-1)+(2-a2-4a),其中a=-2.
如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.
(1)试找出图1中的一个损矩形;
(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;
(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;
(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.
矩形的两邻边长的差为2,对角线长为4,则矩形的面积为 .
如果关于x的一元二次方程(m-1)x2+2x+1=0有两个不相等的实数根,那么m的取值范围是( )
A. m>2 B. m<2 C. m>2且m≠1 D. m<2且m≠1
如图,∠1=20°,∠2=25°,∠A=35°,求∠BDC的度数.
如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的( )
A. AB=CD B. EC=BF C. ∠A=∠D D. AB=BC
画出数轴上并表示下列各数。
, -2, 3 , 1.5
某商店进行促销活动,如果将进价为8元/件的商品按每件10元出售,每天可销售100件,现采用提高售价,减少进货量的办法增加利润,已知这种商品的单价每涨1元,其销售量就要减少10件,问将售价定为多少元/件时,才能使每天所赚的利润最大?并求出最大利润.