搜索
题目内容
三个连续的自然数,如果中间的数为n,则其余2个为
n-1,n+1
n-1,n+1
.
试题答案
相关练习册答案
分析:
根据连续自然数相差1列式即可.
解答:
解:中间的数为n,则其余2个为n-1,n+1.
故答案为:n-1,n+1.
点评:
本题考查了列代数式,主要是连续自然数的表示,是基础题.
练习册系列答案
高效课堂宝典训练系列答案
畅响双优卷系列答案
初中满分冲刺卷系列答案
52045单元与期末系列答案
精彩考评单元测评卷系列答案
导学案快乐学习系列答案
孟建平各地期末试卷精选系列答案
名师三导学练考系列答案
轻松小卷系列答案
提分百分百检测卷系列答案
相关题目
(1)解不等式:
x-3
2
-1>
x-5
3
(2)做一做:
用四块如图1的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图2,图3,图4中各画出一种拼法(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)
(3)读一读:
式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.
由于上述式子比较长,书写也不方便,为了简便起见,我们可以将
“1+2+3+4+5+…+100”表示为
100
n=1
n
,这里“Σ”是求和符号.
例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为
50
n=1
(2n-1)
;又如:“1
3
+2
3
+3
3
+4
3
+5
3
+6
3
+7
3
+8
3
+9
3
+10
3
”可表示为
10
n=1
n
3
.
同学们,通过对以上材料的阅读,请解答下列问题:
<1>2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为
;
<2>计算:
5
n=1
(
n
2
-1)=
(填写最后的计算结果).
将连续的奇数1,3,5,7,…,排成如图所示的数表,用十字框任意框出5个数.
探究规律一:设十字框中间的奇数为a,则框中五个奇数之和用含a的代数式表示为
.
结论:这说明能被十字框框中的五个奇数之和一定是自然数p的奇数倍,这个自然数p是
.
探究规律二:
落在十字框中间且又是第二列的奇数是15,27,39…则这一列数可以用代数式表示为12m+3(m为正整数),同样,落在十字框中间且又是第三列,第四列,第五列的奇数分别可表示为
.
运用规律:
(1)已知被十字框框中的五个奇数之和为6025,则十字框中间的奇数是
.这个奇数落在从左往右第
列.
(2)请你写出一个不能够框在十字框中间的且大于500的奇数:
.
(3)被十字框框中的五个奇数之和可能是485吗?可能是3045吗?说说你的理由.
变通运用:
若把这些奇数重新排列如右图,解答下列问题:
(1)下列能被十字框框在中间的奇数是(
)
A.841 B.1121 C.1263 D.1091
(2)被框在十字框中的五个数之和可能是1925吗?说说你的理由.
将连续的奇数1,3,5,7,…,排成如下图的数表,用图中所示的十字框可任意框出5个数.
【探究规律一】:设十字框中间的奇数为a,则框中五个奇数之和用含a的代数式表示为
5a
5a
.
【结论】:这说明能被十字框框中的五个奇数之和一定是自然数p的奇数倍,这个自然数p是
5
5
.
【探究规律二】:落在十字框中间且又是第二列的奇数是15,27,39,51…则这一列数可以用代数式表示为12m+3(m为正整数),同样,落在十字框中间且又是第三列,第四列的奇数分别可表示为
12m+5,13m+7
12m+5,13m+7
.
【运用规律】:
(1)已知被十字框框中的五个奇数之和为6025,则十字框中间的奇数是
1025
1025
;这个奇数落在从左往右第
3
3
列.
(2)被十字框框中的五个奇数之和可能是485吗?可能是3045吗?说说你的理由.
(2003•无锡)(1)解不等式:
(2)做一做:
用四块如图1的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图2,图3,图4中各画出一种拼法(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)
(3)读一读:
式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.
由于上述式子比较长,书写也不方便,为了简便起见,我们可以将
“1+2+3+4+5+…+100”表示为
,这里“Σ”是求和符号.
例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为
;又如:“1
3
+2
3
+3
3
+4
3
+5
3
+6
3
+7
3
+8
3
+9
3
+10
3
”可表示为
.
同学们,通过对以上材料的阅读,请解答下列问题:
<1>2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为______;
<2>计算:
______(填写最后的计算结果).
(2003•无锡)(1)解不等式:
(2)做一做:
用四块如图1的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图2,图3,图4中各画出一种拼法(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)
(3)读一读:
式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.
由于上述式子比较长,书写也不方便,为了简便起见,我们可以将
“1+2+3+4+5+…+100”表示为
,这里“Σ”是求和符号.
例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为
;又如:“1
3
+2
3
+3
3
+4
3
+5
3
+6
3
+7
3
+8
3
+9
3
+10
3
”可表示为
.
同学们,通过对以上材料的阅读,请解答下列问题:
<1>2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为______;
<2>计算:
______(填写最后的计算结果).
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案