题目内容
方程x2-3x+2=0的解是
- A.1和2
- B.-1和-2
- C.1和-2
- D.-1和2
A
分析:将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.
解答:x2-3x+2=0,
因式分解得:(x-1)(x-2)=0,
可得:x-1=0或x-2=0,
解得:x1=1,x2=2.
故选A
点评:此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
分析:将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.
解答:x2-3x+2=0,
因式分解得:(x-1)(x-2)=0,
可得:x-1=0或x-2=0,
解得:x1=1,x2=2.
故选A
点评:此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
练习册系列答案
相关题目
方程x2+3x-1=0的根可视为函数y=x+3的图象与函数y=
的图象交点的横坐标,那么用此方法可推断出方程x3+2x-1=0的实根x0所在的范围是( )
| 1 |
| x |
| A、-1<x0<0 |
| B、0<x0<1 |
| C、1<x0<2 |
| D、2<x0<3 |
若x1、x2是方程x2-3x-2=0的两个实数根,则x1+x2的值为( )
| A、3 | B、2 | C、-3 | D、-2 |