题目内容
5
.分析:首先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形PMBN为菱形,即可求出MP+NP=BM+BN=BC=5.
解答:
解:作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.
∵菱形ABCD关于AC对称,M是AB边上的中点,
∴M′是AD的中点,
又N是BC边上的中点,
∴AM′∥BN,AM′=BN,
∴四边形AM′NB是平行四边形,
∴PN∥AB,
又N是BC边上的中点,
∴P是AC中点,
∴PM∥BN,PM=BN,
∴四边形PMBN是平行四边形,
∵BM=BN,
∴平行四边形PMBN是菱形.
∴MP+NP=BM+BN=BC=5.
故答案为5.
∵菱形ABCD关于AC对称,M是AB边上的中点,
∴M′是AD的中点,
又N是BC边上的中点,
∴AM′∥BN,AM′=BN,
∴四边形AM′NB是平行四边形,
∴PN∥AB,
又N是BC边上的中点,
∴P是AC中点,
∴PM∥BN,PM=BN,
∴四边形PMBN是平行四边形,
∵BM=BN,
∴平行四边形PMBN是菱形.
∴MP+NP=BM+BN=BC=5.
故答案为5.
点评:考查菱形的性质和轴对称,判断当PMBN为菱形时,MP+NP有最小值,是关键.
练习册系列答案
相关题目
A、sinα=
| ||
B、cosα=
| ||
C、tanα=
| ||
D、tanα=
|