题目内容
化简:(1)
| x3+xy2+1 |
| x3+xy-x2y-y3 |
| x2y-xy2 |
| x3+xy2-x2y-y3 |
| x2y+xy2 |
| x3+x2y+xy2+y3 |
| x2y+y3+1 |
| x2y+y3-x3-xy2 |
| x3+y3 |
| x3+x2y+xy2+y3 |
(2)
| 1 |
| x(x+a) |
| 1 |
| (x+a)(x+2a) |
| 1 |
| (x+2a)(x+3a) |
| 1 |
| (x+3a)(x+4a) |
(3)(
| b2-bc+c2 |
| a |
| a2 |
| b+c |
| 3 | ||||
|
| ||||||
|
(4)
| 1 |
| (x-1)(x-2) |
| 1 |
| (x-2)(x-3) |
| 1 |
| (x-n)(x-n-1) |
分析:(1)先对分子、分母进行因式分解,再约分,最后通分,实现化简.
(2)观察发现
=
-
,
因而将原式转化为
(
-
)+
(
-
)+
(
-
)+
(
-
),再通过提取公因式,求解;
(3)首先将-
转化为-
再与
通分,将
转化为
,再利用乘法的分配律,进一步通过通分,最终达到目的;
(4)观察发现
=
-
,
=
-
…
=
-
=
-
,…,
=
-
将这些式子代入原式.加减抵消相同项,最终得到结果.
(2)观察发现
| a |
| x(x+a) |
| 1 |
| x |
| 1 |
| x+a |
|
|
|
| 1 |
| a |
| 1 |
| x |
| 1 |
| x+a |
| 1 |
| a |
| 1 |
| x+a |
| 1 |
| x+2a |
| 1 |
| a |
| 1 |
| x+2a |
| 1 |
| x+3a |
| 1 |
| a |
| 1 |
| x+3a |
| 1 |
| x+4a |
(3)首先将-
| 3 | ||||
|
| bc |
| b+c |
| a2 |
| b+c |
| ||||||
|
|
(4)观察发现
| 1 |
| (x-1)(x-2) |
| 1 |
| x-2 |
| 1 |
| x-1 |
| 1 |
| (x-2)(x-3) |
| 1 |
| x-3 |
| 1 |
| x-2 |
| 1 |
| (x-n)[x-(n+1)] |
| 1 |
| x-(n+1) |
| 1 |
| x-n |
| 1 |
| (x-2)(x-3) |
| 1 |
| x-3 |
| 1 |
| x-2 |
| 1 |
| (x-n)[x-(n+1)] |
| 1 |
| x-(n+1) |
| 1 |
| x-n |
将这些式子代入原式.加减抵消相同项,最终得到结果.
解答:解:(1)
原式=
•
(2)∵
=
-
,
∴原式=
(
-
)+
(
-
)+
(
-
)+
(
-
)
(3)原式=(
+
)
+(a+b+c)2
(4)∵
=
-
=
-
…
=
-
∴原式=
-
+
-
+…+
-
原式=
| x3+xy2+1 |
| x2(x-y)+y2(x-y) |
| xy(x-y) |
| x2(x-y)+y2(x-y) |
|
(2)∵
| a |
| x(x+a) |
| 1 |
| x |
| 1 |
| x+a |
|
∴原式=
| 1 |
| a |
| 1 |
| x |
| 1 |
| x+a |
| 1 |
| a |
| 1 |
| x+a |
| 1 |
| x+2a |
| 1 |
| a |
| 1 |
| x+2a |
| 1 |
| x+3a |
| 1 |
| a |
| 1 |
| x+3a |
| 1 |
| x+4a |
|
|
(3)原式=(
| b2-bc+c2 |
| a |
| a2-3bc |
| b+c |
| ||
|
|
|
(4)∵
| 1 |
| (x-1)(x-2) |
| 1 |
| x-2 |
| 1 |
| x-1 |
| 1 |
| (x-2)(x-3) |
| 1 |
| x-3 |
| 1 |
| x-2 |
| 1 |
| (x-n)[x-(n+1)] |
| 1 |
| x-(n+1) |
| 1 |
| x-n |
∴原式=
| 1 |
| x-2 |
| 1 |
| x-1 |
| 1 |
| x-3 |
| 1 |
| x-2 |
| 1 |
| x-(n+1) |
| 1 |
| x-n |
|
点评:本题考查分式的混合运算,关键是通分,合并同类项,注意混合运算的运算顺序.同学们特别注意(2)中的
=
-
,
(4)中
=
-
,
=
-
…
=
-
=
-
,…,
=
-
有效转化.
| a |
| x(x+a) |
| 1 |
| x |
| 1 |
| x+a |
|
|
|
| 1 |
| (x-1)(x-2) |
| 1 |
| x-2 |
| 1 |
| x-1 |
| 1 |
| (x-2)(x-3) |
| 1 |
| x-3 |
| 1 |
| x-2 |
| 1 |
| (x-n)[x-(n+1)] |
| 1 |
| x-(n+1) |
| 1 |
| x-n |
| 1 |
| (x-2)(x-3) |
| 1 |
| x-3 |
| 1 |
| x-2 |
| 1 |
| (x-n)[x-(n+1)] |
| 1 |
| x-(n+1) |
| 1 |
| x-n |
有效转化.
练习册系列答案
相关题目