题目内容
已知三个数2,,4.如果再添加一个数,就得到这四个数成比例了,则添加的数是( )
A.
B.或
C.,或
D.,或
某商场将每件进价为160元的某种商品原来按每件200元出售,一天可售出100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润4320元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?并求最大利润值.
某仓库调拨一批物资,调进物资共用8小时.调进物资4小时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资m(吨)与时间t(小时)之间的函数关系如图所示.则这批物资调出的速度(吨/小时)及从开始调进到全部调出所需要的时间(小时)分别是( )
A.10,10 B.25,8.8 C.10,8.8 D.25,9
如图,在矩形ABCD中,AB=16,BC=12,顺次连结各边中点,得菱形;再顺次连结菱形的各边中点,得矩形;再顺次连结矩形的各边中点,得菱形,……这样继续下去.则图中的四边形的周长等于 ,图中的四边形的面积等于 .
如图,AB是⊙O的一条弦,点C是⊙O上一动点,且AB=4,点分别是的中点,
直线与⊙O交于G、H两点,若⊙O的半径为5,当GE+FH的值最大时,弦BC的长等于( )
A.8 B.10 C.或8 D.或10
已知正方形ABCD中,AB=BC=CD=AD=10cm,动点P,Q分别从点B,C同时出发沿正
方形的四周运动.设点P的运动速度为2cm/s,点Q的运动速度为3cm/s,设点P,Q运动的时间为t(s)
(1)若点P,Q作相向运动,且它们第一次相遇在AD边上,求t的值.
(2)在(1)中点P,Q第一次相遇后继续运动,到第2次相遇,第3次相遇,…,求第100次相遇时,
相遇地点在正方形ABCD哪条边上,请写出计算过程.
(3)若点P,Q作同向运动,求它们相遇时t的值.
如图,正方形的边长是一个单位长度,则图中A点所表示的数是 ,在本题的解答过程,运用了一种重要的数学思想,这种数学思想是 思想.
规定 ※ 表示一种运算,且,求下列各式的值:
; .
若、是一元二次方程的两个根,则的值是
A.-1 B.0 C.1 D.2