题目内容
在下列调查中,适宜采用全面调查的是( )
A. 了解我省中学生的视力情况
B. 了解七(1)班学生校服的尺码情况
C. 检测一批电灯泡的使用寿命
D. 调查安徽卫视《第一时间》栏目的收视率
(1)问题解决:如图1,△ABC中,BO、CO分别是∠ABC和∠ACB的平分线,O为BO、CO交点,若∠A=62°,求∠BOC的度数;(写出求解过程)
(2)拓展与探究
①如图1,△ABC中,BO、CO分别是∠ABC和∠ACB的平分线,O为BO、CO交点,则∠BOC与∠A的关系是 ;(请直接写出你的结论)
②如图2,BO、CO分别是∠ABC和∠ACB的两个外角∠CBD和∠BCE的平分线,O为BO、CO交点,则∠BOC与∠A的关系是 ;(请直接写出你的结论)
③如图3,BO、CO分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线,O为BO、CO交点,则∠BOC与∠A的关系是 .(请直接写出你的结论)
已知a、b、c都是实数,则关于三个不等式:a>b、a>b+c、c<0的逻辑关系的表述,下列正确的是( ) .
A. 因为a>b、c<0所以a>b+c B. 因为a>b+c,c<0,所以a>b
C. 因为a>b+c,所以a>b,c<0 D. 因为a>b、a>b+c,所以c <0
计算:
直线AB上有一点O,OM⊥AB于O,另有直角∠COD在平角∠AOB内绕O点左右摆动(OC与OA、OD与OB不重合),在摆动时,始终与∠MOD保持相等的角是( )
A. ∠BOD B. ∠AOC C. ∠COM D. 没有
如图,矩形ABCD的对角线AC、BD交于点O,CE∥BD,DE∥AC.
(1)证明:四边形OCED为菱形;
(2)若AC=4,求四边形CODE的周长.
如图,在Rt△ABC中,∠ACB=90°,点D、E、F分别是三边的中点,CF=8cm,则线段DE=________cm.
如图,直线y=kx﹣2与双曲线y=-(x<0)交于点A,与x轴交于点C,与y轴交于点D.AB⊥x轴于点B,AE⊥y轴于点E, △ABC的面积为2.
(1)直接写出四边形OCAE的面积;
(2)求点C的坐标.
阅读下面的例题,并回答问题.
(例题)解一元二次不等式:x2-2x-8>0.
【解析】对x2-2x-8分解因式,得x2-2x-8=(x-1)2-9=(x-1)2-32=(x+2)(x-4),
∴(x+2)(x-4)>0.由“两实数相乘,同号得正,异号得负”,可得①或②
解①得x>4;解②得x<-2.
故x2-2x-8>0的解集是x>4或x<-2.
(1)直接写出x2-9>0的解是 ;
(2)仿照例题的解法解不等式:x2+4x-21<0;
(3)求分式不等式:≤0的解集.