题目内容
如图,AB∥CD,则图中α,β,γ三者之间的关系是( )
A. α+β+γ=180° B. α–β+γ=180° C. α+β–γ=180° D. α+β+γ=360°
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.
(1)求点C的坐标(用含a的代数式表示);
(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;
(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.
下列各函数中,y随x增大而增大的是( )
A. y=﹣x+1 B. C. y=x2+1 D. y=2x﹣3
如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是______.
红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是( )
A. 红红不是胜就是输,所以红红胜的概率为
B. 红红胜或娜娜胜的概率相等
C. 两人出相同手势的概率为
D. 娜娜胜的概率和两人出相同手势的概率一样
在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:
方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;
(总费用=广告赞助费+门票费)
方案二:购买门票方式如图所示.
解答下列问题:
(1)方案一中,y与x的函数关系式为 ;
方案二中,当0≤x≤100时,y与x的函数关系式为 ,
当x>100时,y与x的函数关系式为 ;
(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;
(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.
如果一个正比例函数的图象与一个反比例函数 y= 的图象交 A( ),B( ),那么 ( )( )值为 __.
在△ABC中,BD平分∠ABC,EF垂直平分BD交CA延长线于点E.
(1)求证:ED2=EA•EC;
(2)若ED=6,BD=CD=3,求BC的长.
如图所示,△ABC中,点D、E分别是AC、BC边上的点,且DE∥AB,CD:CA﹦2:3,△ABC的面积是18,则△DEC的面积是 ( )
A. 8 B. 9 C. 12 D. 15