题目内容
【题目】抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.![]()
(1)求点B及点D的坐标.
(2)连结BD,CD,抛物线的对称轴与x轴交于点E.
①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.
②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.
【答案】
(1)
解:∵抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),
∴当y=0时,(x﹣3)(x+1)=0,
解得x=3或﹣1,
∴点B的坐标为(3,0).
∵y=(x﹣3)(x+1)=x2﹣2x﹣3=(x﹣1)2﹣4,
∴顶点D的坐标为(1,﹣4);
(2)
解:①如右图.
∵抛物线y=(x﹣3)(x+1)=x2﹣2x﹣3与与y轴交于点C,
∴C点坐标为(0,﹣3).
∵对称轴为直线x=1,
∴点E的坐标为(1,0).
连接BC,过点C作CH⊥DE于H,则H点坐标为(1,﹣3),
∴CH=DH=1,
∴∠CDH=∠BCO=∠BCH=45°,
∴CD=
,CB=3
,△BCD为直角三角形.
分别延长PC、DC,与x轴相交于点Q,R.
∵∠BDE=∠DCP=∠QCR,
∠CDB=∠CDE+∠BDE=45°+∠DCP,
∠QCO=∠RCO+∠QCR=45°+∠DCP,
∴∠CDB=∠QCO,
∴△BCD∽△QOC,
∴
=
=
,
∴OQ=3OC=9,即Q(﹣9,0).
∴直线CQ的解析式为y=﹣
x﹣3,
直线BD的解析式为y=2x﹣6.
由方程组
,解得
.
∴点P的坐标为(
,﹣
);
②(Ⅰ)当点M在对称轴右侧时.
若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G.
∵∠CMN=∠BDE,∠CNM=∠BED=90°,
∴△MCN∽△DBE,
∴
,
∴MN=2CN.
设CN=a,则MN=2a.
∵∠CDE=∠DCF=45°,
∴△CNF,△MGF均为等腰直角三角形,
∴NF=CN=a,CF=
a,
∴MF=MN+NF=3a,
∴MG=FG=
a,
∴CG=FG﹣FC=
a,
∴M(
a,﹣3+
a).
代入抛物线y=(x﹣3)(x+1),解得a=
,
∴M(
,﹣
);
若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.
∵∠CMN=∠BDE,∠CNM=∠BED=90°,
∴△MCN∽△DBE,
∴
=
=
,
∴MN=2CN.
设CN=a,则MN=2a.
∵∠CDE=45°,
∴△CNF,△MGF均为等腰直角三角形,
∴NF=CN=a,CF=
a,
∴MF=MN﹣NF=a,
∴MG=FG=
a,
∴CG=FG+FC=
a,
∴M(
a,﹣3+
a).
代入抛物线y=(x﹣3)(x+1),解得a=5
,
∴M(5,12);
(Ⅱ)当点M在对称轴左侧时.
∵∠CMN=∠BDE<45°,
∴∠MCN>45°,
而抛物线左侧任意一点K,都有∠KCN<45°,
∴点M不存在.
综上可知,点M坐标为(
,﹣
)或(5,12).
【解析】(1)已知解析式,依据题意求出点的坐标即可。
(2)依据一元二次函数的性质解答。
【考点精析】认真审题,首先需要了解二次函数的图象(二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点),还要掌握二次函数的性质(增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小)的相关知识才是答题的关键.