题目内容
已知:x=
,y=
求值:x2+x2y-xy+y2x+y2-2
.
| 1 | ||
|
| 1 | ||
|
求值:x2+x2y-xy+y2x+y2-2
| 2 |
分析:分母有理化求出x、y的值,求出x+y,xy的值,把原式转化成x+y)2-3xy+xy(x+y)-2
,代入求出即可.
| 2 |
解答:解:∵x=
=
=
-1,y=
=
=
+1,
∴x+y=2
,xy=2-1=1,
∴x2+x2y-xy+y2x+y2-2
.
=x2-xy+y2+(x2y+xy2)-2
=(x+y)2-3xy+xy(x+y)-2
=(2
)2-3×1+1×2
-2
=8-3+2
-2
=5.
| 1 | ||
|
1×(
| ||||
(
|
| 2 |
| 1 | ||
|
| ||||
(
|
| 2 |
∴x+y=2
| 2 |
∴x2+x2y-xy+y2x+y2-2
| 2 |
=x2-xy+y2+(x2y+xy2)-2
| 2 |
=(x+y)2-3xy+xy(x+y)-2
| 2 |
=(2
| 2 |
| 2 |
| 2 |
=8-3+2
| 2 |
| 2 |
=5.
点评:本题考查了二次根式的混合运算和求值,完全平方公式,分母有理化的应用,主要考查学生的计算能力.
练习册系列答案
相关题目