题目内容

【题目】如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF. 求证:

(1)PE=PF;
(2)点P在∠BAC的角平分线上.

【答案】
(1)证明:如图,连接AP并延长,

∵PE⊥AB,PF⊥AC

∴∠AEP=∠AFP=90°

又AE=AF,AP=AP,

∵在Rt△AFP和Rt△AEP中

∴Rt△AEP≌Rt△AFP(HL),

∴PE=PF.


(2)证明:∵Rt△AEP≌Rt△AFP,

∴∠EAP=∠FAP,

∴AP是∠BAC的角平分线,

故点P在∠BAC的角平分线上


【解析】(1)连接AP,根据HL证明△APF≌△APE,可得到PE=PF;(2)利用(1)中的全等,可得出∠FAP=∠EAP,那么点P在∠BAC的平分线上.
【考点精析】根据题目的已知条件,利用角平分线的性质定理的相关知识可以得到问题的答案,需要掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网