题目内容

如图,□ABCD中,∠ABC=60°,E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,求AB的长.
1.

试题分析:首先证明四边形ABDE是平行四边形,AB=DE=CD,即D是CE的中点,在直角△CEF中利用三角函数即可求得到CE的长,则求得CD,进而根据AB=CD求解.
∵四边形ABCD是平行四边形,
∴AB∥DC,AB=CD,
∵AE∥BD,
∴四边形ABDE是平行四边形.
∴AB=DE=CD,即D为CE中点.
∵EF⊥BC,
∴∠EFC=90°.
∵AB∥CD,
∴∠DCF=∠ABC=60°.
∴∠CEF=30°.
∵EF=
∴CE=2.
∴AB=1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网