题目内容
﹣3的相反数是 ;的立方根是 .
已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y1=k1x+b1,直线CD的表达式为y2=k2x+b2,则k1k2= .
化简(﹣x)3(﹣x)2,结果正确的是( )
A.﹣x6 B.x6 C.x5 D.﹣x5
下列运算正确的是( )
A.a3+a2=2a5
B.(﹣ab2)3=a3b6
C.2a(1﹣a)=2a﹣2a2
D.(a+b)2=a2+b2
如图,已知∠CAE是△ABC的外角,AD∥BC,且AD是∠EAC的平分线,若∠B=71°,则∠BAC= .
如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
(1)EA是∠QED的平分线;
(2)EF2=BE2+DF2.
如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是( )
A.①② B.②③ C.②④ D.①③④
先化简:,再求当x+1与x+6互为相反数时代数式的值.
如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=,点P为射线BD,CE的交点.
(1)求证:BD=CE;
(2)若AB=2,AD=1,把△ADE绕点A旋转,
①当∠EAC=时,求PB的长;
②直接写出旋转过程中线段PB长的最小值与最大值.