题目内容
如图,已知一次函数y=kx+b,观察图象回答问题:当kx+b>0,x的取值范围是( )
A. x>2.5 B .x<2.5 C. x>-5 D. x<-5
计算:(=
计算: ;。
如图,在△ABC中,AD⊥BC,垂足为D,E为AC上一点,BE交AD于F,且BF=AC,FD=CD,AD=3,求AB的长。
已知AB=AC,AD为∠BAC的角平分线,D、E、F…为∠BAC的角平分线上的若干点。如图1,连接BD、CD,图中有1对全等三角形;如图2,连接BD、CD、BE、CE,图中有3对全等三角形;如图3,连接BD、CD、CE、BF、CF,图中有6对全等三角形;依此规律,第8个图形中有全等三角形( )
A.24对 B.28对 C.36对 D.72对
已知三角形三边长分别为3,1-2a,8,则a的取值范围是( )
A.5<a<11 B. 4<a<10 C. -5<a<-2 D. -2<a<-5
如图1所示,已知函数y= (x>0)图像上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0) .动点M是y轴正半轴上点B上方的点.动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q.连接AQ,取AQ的中点C.
(1)如图2,连接BP,求△PAB的面积;
(2)当点Q在线段BD上时, 若四边形BQNC是菱形,面积为2,求此时P点的坐标.
(3)在(2)的条件下,在平面直角坐标系中是否存在点S,使得以点D、Q、N、S为顶点的四边形为平行四边
形,如果存在,请直接写出所有的点S的坐标;如果不存在,请说明理由.
如图,矩形BCDE的各边分别平行于轴或轴,物体甲和物体乙由点(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2016次相遇地点的坐标是( )
A.(-1,-1) B.(2,0) C.(-1,1) D.(1,-1)
已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数
y=的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)结合图象直接写出不等式kx+b<的解集.