题目内容
二次函数y=ax2+bx+c的图象如图所示,则下列关系式不正确的是
- A.a<0
- B.abc>0
- C.a+b+c>0
- D.b2-4ac>0
C
分析:由抛物线开口向下得到a<0,由抛物线与y轴交于正半轴知道c>0,而称轴在y轴左边,得到-
<0,所以b<0,abc>0,而抛物线与x轴有两个交点,得到b2-4ac>0,又当x=1时,y<0,由此得到a+b+c<0.
解答:∵抛物线开口向下,
∴a<0,
∵抛物线与y轴交于正半轴,
∴c>0,
∵对称轴在y轴左边,-
<0,
∴b<0,abc>0,
∵抛物线与x轴有两个交点,
∴b2-4ac>0,
当x=1时,y<0,
∴a+b+c<0.
故选C.
点评:本题主要考查二次函数的图象和性质问题.
分析:由抛物线开口向下得到a<0,由抛物线与y轴交于正半轴知道c>0,而称轴在y轴左边,得到-
解答:∵抛物线开口向下,
∴a<0,
∵抛物线与y轴交于正半轴,
∴c>0,
∵对称轴在y轴左边,-
∴b<0,abc>0,
∵抛物线与x轴有两个交点,
∴b2-4ac>0,
当x=1时,y<0,
∴a+b+c<0.
故选C.
点评:本题主要考查二次函数的图象和性质问题.
练习册系列答案
相关题目