ÌâÄ¿ÄÚÈÝ
ÒÑÖª¶þ´Îº¯Êýy=x2+px+qͼÏóµÄ¶¥µãMΪֱÏßy=
xÓëy=-x+mµÄ½»µã£¬
£¨1£©Óú¬mµÄ´úÊýʽÀ´±íʾµãMµÄ×ø±ê£»
£¨2£©Èô¶þ´Îº¯Êýy=x2+px+qͼÏó¾¹ýA£¨0£¬3£©£¬Çó¶þ´Îº¯Êýy=x2+px+qµÄ½âÎöʽ£»
£¨3£©ÔÚ£¨2£©ÖеĶþ´Îº¯Êýy=x2+px+qµÄͼÏóÓëxÖáÓÐÁ½¸ö½»µã£¬ÉèÓëxÖáµÄ×ó½»µãΪB£¬µãPΪÅ×ÎïÏß¶Ô³ÆÖáÉÏÒ»µã£¬Èô¡÷PABΪֱ½ÇÈý½ÇÐΣ¬ÇëÇó³öËùÓÐÂú×ãÌõ¼þµÄµãPµÄ×ø±ê£®
| 1 | 2 |
£¨1£©Óú¬mµÄ´úÊýʽÀ´±íʾµãMµÄ×ø±ê£»
£¨2£©Èô¶þ´Îº¯Êýy=x2+px+qͼÏó¾¹ýA£¨0£¬3£©£¬Çó¶þ´Îº¯Êýy=x2+px+qµÄ½âÎöʽ£»
£¨3£©ÔÚ£¨2£©ÖеĶþ´Îº¯Êýy=x2+px+qµÄͼÏóÓëxÖáÓÐÁ½¸ö½»µã£¬ÉèÓëxÖáµÄ×ó½»µãΪB£¬µãPΪÅ×ÎïÏß¶Ô³ÆÖáÉÏÒ»µã£¬Èô¡÷PABΪֱ½ÇÈý½ÇÐΣ¬ÇëÇó³öËùÓÐÂú×ãÌõ¼þµÄµãPµÄ×ø±ê£®
·ÖÎö£º£¨1£©ÒÑÖªÖ±Ïßy=
xºÍy=-x+m£¬Áгö·½³ÌÇó³öx£¬yµÄµÈÁ¿¹ØÏµÊ½¼´¿ÉÇó³öµãMµÄ×ø±ê£®
£¨2£©½«Aµã×ø±ê´úÈëy=(x-
m)2+
m£¬Çó³ömµÄÖµ¼´¿ÉµÃ³ö½âÎöʽ£»
£¨3£©ÀûÓâٵ±¡ÏBAP=90¡ãʱ£¬¢Úµ±¡ÏABP=90¡ãʱ£¬¢Ûµ±¡ÏAPB=90¡ãʱ£¬·Ö±ð½â³öPµã×ø±ê¼´¿É£®
| 1 |
| 2 |
£¨2£©½«Aµã×ø±ê´úÈëy=(x-
| 2 |
| 3 |
| 1 |
| 3 |
£¨3£©ÀûÓâٵ±¡ÏBAP=90¡ãʱ£¬¢Úµ±¡ÏABP=90¡ãʱ£¬¢Ûµ±¡ÏAPB=90¡ãʱ£¬·Ö±ð½â³öPµã×ø±ê¼´¿É£®
½â´ð£º½â£º£¨1£©ÓÉ
£¬
µÃ
£¬
¼´½»µãM×ø±êΪ£¨
m£¬
m£©£»
£¨2£©¡ß´Ëʱ¶þ´Îº¯ÊýΪy=(x-
m)2+
m¹ýµãA£¨0£¬3£©£¬
¡à3=(0-
m)2+
m£¬
µÃm1=-3£¬m2=
£¬
¡ày=£¨x+2£©2-1»òÕßy=(x-
)2+
£»
£¨3£©¡ß¶þ´Îº¯Êýy=(x-
)2+
ÓëxÖáûÓн»µã£¬
ÓÖ¡ß¶þ´Îº¯Êýy=x2+px+qµÄͼÏóÓëxÖáÓÐÁ½¸ö½»µãʱ£¬
¡à¶þ´Îº¯ÊýΪy=x2+4x+3£¬ÓëxÖáµÄ×ó½»µãBΪ£¨-3£¬0£©£¬¶Ô³ÆÖáΪֱÏßx=-2
¢Ùµ±¡ÏBAP=90¡ãʱ£¬Èçͼ1£¬×÷P1D¡ÍyÖáÓÚµãD£¬
ÉèPµã×ø±êΪ£¨-2£¬y£©£¬ÔòP1A2+AB2=BP12£¬¿ÉµÃP1D2+AD 2+AB2=P1E2+BE 2£®
¼´22+£¨y-3£©2+£¨3
£©2=y2+12£®
½âµÃ£ºy=5£¬
¿ÉµÃP1×ø±êΪ£¨-2£¬5£©£¬
¢Úµ±¡ÏABP=90¡ãʱ£¬Èçͼ2£¬ÔòBP2 2+AB2=AP2 2£¬ÉèPµã×ø±êΪ£¨-2£¬a£©£¬
¼´a2+1+£¨3
£©2=£¨3-a£©2+£¨-2£©2
½âµÃ£ºa=-1£¬
¿ÉµÃP2×ø±êΪ£¨-2£¬-1£©£¬
¢Ûµ±¡ÏAPB=90¡ãʱ£¬Í¬Àí¿ÉµÃP1A2+BP12=AB2£¬ÉèPµã×ø±êΪ£¨-2£¬b£©£¬
Ôò£¨3
£©2=£¨b-3£©2+4+1+b2£¬
½âµÃ£ºb=
¡À
£¬
¿ÉµÃPÔÚÒÔABΪֱ¾¶µÄÔ²ÓëÖ±Ïßx=-2µÄ½»µãÉÏ£¬ÓÐÁ½¸ö£º
P3£¨-2£¬
+
£©£¬P4£¨-2£¬
-
£©£¬
×ÛÉϵ㬵±PΪ£¨-2£¬5£©£¬£¨-2£¬-1£©£¬£¨-2£¬
+
£©»ò£¨-2£¬
-
£©Ê±£¬¡÷PABΪֱ½ÇÈý½ÇÐΣ®
|
µÃ
|
¼´½»µãM×ø±êΪ£¨
| 2 |
| 3 |
| 1 |
| 3 |
£¨2£©¡ß´Ëʱ¶þ´Îº¯ÊýΪy=(x-
| 2 |
| 3 |
| 1 |
| 3 |
¡à3=(0-
| 2 |
| 3 |
| 1 |
| 3 |
µÃm1=-3£¬m2=
| 9 |
| 4 |
¡ày=£¨x+2£©2-1»òÕßy=(x-
| 3 |
| 2 |
| 3 |
| 4 |
£¨3£©¡ß¶þ´Îº¯Êýy=(x-
| 3 |
| 2 |
| 3 |
| 4 |
ÓÖ¡ß¶þ´Îº¯Êýy=x2+px+qµÄͼÏóÓëxÖáÓÐÁ½¸ö½»µãʱ£¬
¡à¶þ´Îº¯ÊýΪy=x2+4x+3£¬ÓëxÖáµÄ×ó½»µãBΪ£¨-3£¬0£©£¬¶Ô³ÆÖáΪֱÏßx=-2
¢Ùµ±¡ÏBAP=90¡ãʱ£¬Èçͼ1£¬×÷P1D¡ÍyÖáÓÚµãD£¬
ÉèPµã×ø±êΪ£¨-2£¬y£©£¬ÔòP1A2+AB2=BP12£¬¿ÉµÃP1D2+AD 2+AB2=P1E2+BE 2£®
¼´22+£¨y-3£©2+£¨3
| 2 |
½âµÃ£ºy=5£¬
¿ÉµÃP1×ø±êΪ£¨-2£¬5£©£¬
¢Úµ±¡ÏABP=90¡ãʱ£¬Èçͼ2£¬ÔòBP2 2+AB2=AP2 2£¬ÉèPµã×ø±êΪ£¨-2£¬a£©£¬
¼´a2+1+£¨3
| 2 |
½âµÃ£ºa=-1£¬
¿ÉµÃP2×ø±êΪ£¨-2£¬-1£©£¬
¢Ûµ±¡ÏAPB=90¡ãʱ£¬Í¬Àí¿ÉµÃP1A2+BP12=AB2£¬ÉèPµã×ø±êΪ£¨-2£¬b£©£¬
Ôò£¨3
| 2 |
½âµÃ£ºb=
| 3 |
| 2 |
| ||
| 2 |
¿ÉµÃPÔÚÒÔABΪֱ¾¶µÄÔ²ÓëÖ±Ïßx=-2µÄ½»µãÉÏ£¬ÓÐÁ½¸ö£º
P3£¨-2£¬
| 3 |
| 2 |
| ||
| 2 |
| 3 |
| 2 |
| ||
| 2 |
×ÛÉϵ㬵±PΪ£¨-2£¬5£©£¬£¨-2£¬-1£©£¬£¨-2£¬
| 3 |
| 2 |
| ||
| 2 |
| 3 |
| 2 |
| ||
| 2 |
µãÆÀ£º±¾Ì⿼²éµÄÊǶþ´Îº¯ÊýµÄ×ÛºÏÔËÓÃÒÔ¼°Ö±½ÇÈý½ÇÐεÄÐÔÖʵÈ֪ʶ£¬ÀûÓ÷ÖÀàÌÖÂ۵óöPµã×ø±êÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖª¶þ´Îº¯Êýy=x2+£¨2a+1£©x+a2-1µÄ×îСֵΪ0£¬ÔòaµÄÖµÊÇ£¨¡¡¡¡£©
A¡¢
| ||
B¡¢-
| ||
C¡¢
| ||
D¡¢-
|
| A¡¢x1=1£¬x2=3 | B¡¢x1=0£¬x2=3 | C¡¢x1=-1£¬x2=1 | D¡¢x1=-1£¬x2=3 |