题目内容
求证:∠ADC=∠BDC.
分析:首先利用∠ACB+∠ADB=180°,得出ABCD四点共圆,进而得出弦AC、BC所对的圆周角相等,即∠ADC=∠BDC得出答案即可.
解答:证明:∵∠ABC=∠BAC=60°,
∴AC=BC,
∵∠ACB+∠ADB=180°,
∴A、B、C、D四点共圆,
∵AC=BC,
∴弦AC、BC所对的圆周角相等,
∴∠ADC=∠BDC.
即:DC平分∠ADB.
∴AC=BC,
∵∠ACB+∠ADB=180°,
∴A、B、C、D四点共圆,
∵AC=BC,
∴弦AC、BC所对的圆周角相等,
∴∠ADC=∠BDC.
即:DC平分∠ADB.
点评:此题主要考查了四点共圆以及圆周角定理,利用已知得出弦AC、BC所对的圆周角相等是解题关键.
练习册系列答案
相关题目