题目内容
【题目】如图①,将射线Ox按逆时针方向旋转β,得到的射线Oy,如果P为射线Oy上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为(a,β).例如,图②中,如果OM=8,∠xOM=110°,那么点M在平面内的位置记为M(8,110°),根据图形,解答下列问题:
(1)如图③,如果点N在平面内的位置记为N(6,30°),那么ON=__ __,∠xON= .
(2)如果点A,B在平面内的位置分别记为A(5,30°),B(12,120°),求A,B两点之间的距离.
![]()
【答案】(1)6,30°(2) 13
【解析】试题分析:(1)由题意得有序数对第一个数表示此点距离点O的距离,第二个数表示此点与点O的连线与Ox射线所夹的角的度数;(2)根据相应的度数求得∠AOB的度数,再判断出△AOB的形状,利用勾股定理得出AB的长.
试题解析:(1)根据点N在平面内的位置记为N(6,30°)可知,ON=6,∠xON=30°;
(2)如图.
![]()
∵点A(5,30°),B(12,120°),
∴∠BOx=120°,∠AOx=30°,OA=5,OB=12,
∴∠AOB=∠Box-∠AOx=90°,
∴△AOB是直角三角形,
∴在Rt△AOB中,AB=
=13.
故答案为:(1)6,30°;(2)A,B两点之间的距离为13.
【题目】某校拟派一名跳高运动员参加校际比赛,对甲、乙两名同学进行了8次跳高选拔比赛,他们的原始成绩(单位:cm)如下表:
学生/成绩/次数 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | 第7次 | 第8次 |
甲 | 169 | 165 | 168 | 169 | 172 | 173 | 169 | 167 |
乙 | 161 | 174 | 172 | 162 | 163 | 172 | 172 | 176 |
两名同学的8次跳高成绩数据分析如下表:
学生/成绩/名称 | 平均数(单位:cm) | 中位数(单位:cm) | 众数(单位:cm) | 方差(单位:cm2) |
甲 | a | b | c | 5.75 |
乙 | 169 | 172 | 172 | 31.25 |
根据图表信息回答下列问题:
(1)a= ,b= ,c= ;
(2)这两名同学中, 的成绩更为稳定;(填甲或乙)
(3)若预测跳高165就可能获得冠军,该校为了获取跳高比赛冠军,你认为应该选择 同学参赛,理由是: ;
(4)若预测跳高170方可夺得冠军,该校为了获取跳高比赛冠军,你认为应该选择 同学参赛,班由是: .