题目内容
在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4),C(﹣2,9).
(1)画出△ABC,并求出AC所在直线的解析式.
(2)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1,并求出△ABC在上述旋转过程中扫过的面积.

(1)画出△ABC,并求出AC所在直线的解析式.
(2)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1,并求出△ABC在上述旋转过程中扫过的面积.
解:(1)如图所示,△ABC即为所求,设AC所在直线的解析式为y=kx+b(k≠0),
∵A(﹣1,2),C(﹣2,9),
∴
,
解得
,
∴y=﹣7x﹣5;
(2)如图所示,△A1B1C1即为所求,
由图可知,
,
S=S扇形+S△ABC,
=
+2×7﹣1×5×
﹣2×2×
,
=
.

∵A(﹣1,2),C(﹣2,9),
∴
解得
∴y=﹣7x﹣5;
(2)如图所示,△A1B1C1即为所求,
由图可知,
S=S扇形+S△ABC,
=
=
练习册系列答案
相关题目