题目内容
下列算式中,结果等于a5的是( )
A. a2+a3 B. a2•a3 C. a5÷a D. (a2)3
已知:在四边形ABCD中,E、F、G、H分别是BC、AD、BD、AC的中点,AB=CD,
EF与GH有什么位置关系?请说明理由。
下列结论中错误的是( )
A. 四边形的内角和等于它的外角和
B. 点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为(﹣3,0)
C. 方程x2+x﹣2=0的两根之积是﹣2
D. 函数y=的自变量x的取值范围是x>3
如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:
①若C、O两点关于AB对称,则OA=2;
②C、O两点距离的最大值为4;
③若AB平分CO,则AB⊥CO;
④斜边AB的中点D运动路径的长为;
其中正确的是_____(把你认为正确结论的序号都填上).
若,,则=___,=___.
已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k为常数).
(1)求证无论k为何值,方程总有两个不相等实数根;
(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;
(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.
在平面直角坐标系中,点A坐标为(1,0),线段OA绕原点O沿逆时针方向旋转45°,并且每次的长度增加一倍,例如:OA1=2OA,∠A1OA=45°.按照这种规律变换下去,点A2017的纵坐标为_____.
如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:
(1)求证:△BEF∽△DCB;
(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;
(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?试说明理由.
某人设计装饰地面的图案,拟以长为22cm,16cm,18cm的三条线段中的两条为对角线,另一条为边,画出不同形状的平行四边形,他可以画出形状不同的平行四边形的个数为( )
A. 1 B. 2 C. 3 D. 4