题目内容

同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=﹣x2+3x上的概率为(  )

 

A.

B.

C.

D.

考点:

列表法与树状图法;二次函数图象上点的坐标特征.

专题:

阅读型.

分析:

画出树状图,再求出在抛物线上的点的坐标的个数,然后根据概率公式列式计算即可得解.

解答:

解:根据题意,画出树状图如下:

一共有36种情况,

当x=1时,y=﹣x2+3x=﹣12+3×1=2,

当x=2时,y=﹣x2+3x=﹣22+3×2=2,

当x=3时,y=﹣x2+3x=﹣32+3×3=0,

当x=4时,y=﹣x2+3x=﹣42+3×4=﹣4,

当x=5时,y=﹣x2+3x=﹣52+3×5=﹣10,

当x=6时,y=﹣x2+3x=﹣62+3×6=﹣18,

所以,点在抛物线上的情况有2种,

P(点在抛物线上)==

故选A.

点评:

本题考查了列表法与树状图法,二次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网