题目内容
如图,点E、F、G、H分别为菱形A1B1C1D1各边的中点,连接A1F、B1G、C1H、D1E得四边形A2B2C2D2,以此类推得四边形A3B3C3D3…,若菱形A1B1C1D1的面积为S,则四边形AnBnCnDn的面积为________.
分析:由E、F、G、H分别为菱形A1B1C1D1各边的中点,得到A1H=C1F,又A1H∥C1F,利用一组边长平行且相等的四边形为平行四边形得到四边形A1HC1F为平行四边形,根据平行线间的距离相等及平行四边形与三角形的面积公式,可得出四边形A1HC1F的面积等于△HB1C1面积的2倍,等于△A1D1F面积的2倍,而这三个的面积之和为菱形的面积S,可得出四边形A1HC1F面积为菱形面积S的一半,再由平行线等分线段定理得到A2为A1D2的中点,C2为C1B2的中点,B2为B1A2的中点,D2为D1C2的中点,利用三角形的中位线定理得到HB2=
解答:∵H为A1B1的中点,F为C1D1的中点,
∴A1H=B1H,C1F=D1F,
∴A1H=C1F,又A1H∥C1F,
∴四边形A1HC1F为平行四边形,
∴S四边形A1HC1F=2S△HB1C1=2S△A1D1F,
又S四边形A1HC1F+S△HB1C1+S△A1D1F=S菱形A1B1C1D1=S,
∴S四边形A1HC1F=
又GD1=B1E,GD1∥B1E,
∴GB1ED1为平行四边形,
∴GB1∥ED1,又G为A1D1的中点,
∴A2为A1D2的中点,
同理C2为C1B2的中点,B2为B1A2的中点,D2为D1C2的中点,
∴HB2=
又A1A2B2H和C1C2D2F都为梯形,且高与平行四边形A2B2C2D2的高h相等(设高为h),
下底与平行四边形A2B2C2D2的边A2D2与x相等(设A2D2=x),
∴S梯形A1A2B2H=S梯形C1C2D2F=
即S梯形A1A2B2H:S梯形C1C2D2F:S平行四边形A2B2C2D2=3:3:4,
又S梯形A1A2B2H+S梯形C1C2D2F+S平行四边形A2B2C2D2=S四边形A1HC1F,
∴S平行四边形A2B2C2D2=
同理S四边形A3B3C3D3=(
以此类推得四边形AnBnCnDn的面积为(
故答案为:(
点评:此题考查了三角形的中位线定理,平行四边形的判定与性质,平行线等分线段定理,以及平行四边形与三角形面积的计算,利用了转化的数学思想,是一道规律型试题,灵活运用三角形中位线定理是解本题的关键.
练习册系列答案
相关题目
| 2 |
| A、(0,0) | ||||||||
B、(
| ||||||||
| C、(1,1) | ||||||||
D、(
|