题目内容
如图,PD⊥AB,PE⊥AC,垂足分别为D、E,用HL证明△APD≌△APE需添加的条件是_______,(填一个即可)
如图,将矩形的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形,厘米,厘米,则边的长是( )
A. 厘米 B. 厘米 C. 厘米 D. 厘米
已知直角三角形的两直角边a,b满足+(b﹣8)2=0,则斜边c上中线的长为_____.
探究
问题1 已知:如图1,三角形ABC中,点D是AB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=kDF,则k的值为 .
拓展
问题2 已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE=DF.
推广
问题3 如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.
如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.且AF=5,则DC=_____.
如图,△ABC≌△DEF,BC∥EF,AC∥DF,则∠C的对应角是( )
A. ∠F B. ∠AGF C. ∠AEF D. ∠D
如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为(1,0),抛物线y=﹣x2+bx+c经过A、B两点.
(1)求点A的坐标;
(2)求抛物线的解析式;
(3)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
关于二次函数,下列说法正确的是( )
A. 图像与轴的交点坐标为 B. 图像的对称轴在轴的右侧
C. 当时,的值随值的增大而减小 D. 的最小值为-3
在平面直角坐标系中,抛物线y=x2+x+2上有一动点P,直线y=﹣x﹣2上有一动线段AB,当P点坐标为_____时,△PAB的面积最小.