题目内容
如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.
函数中自变量的取值范围是______________
如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,点E在上,连接DE,AE,连接CE并延长交AB于点F,∠AED=∠ACF.
(1)求证:CF⊥AB;
(2)若CD=4,CB=4,cos∠ACF=,求EF的长.
已知抛物线y=﹣+bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).
(1)求抛物线的解析式;
(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;
(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.
如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2、C2的坐标.
如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分),则下列结论:
①AD=BE=5cm;②当0<t≤5时,y=t2;③直线NH的解析式为y=﹣t+27;④若△ABE与△QBP相似,则t=秒,其中正确结论的个数为( )
A. 4 B. 3 C. 2 D. 1
若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )
A. 矩形 B. 菱形
C. 对角线相等的四边形 D. 对角线互相垂直的四边形
计算:(﹣)﹣3+ +2sin45°+()0= .
如图,∠BAD=∠C,DE⊥AB于E,AF⊥BC于F,若BD=6,AB=8,则DE:AF= .