题目内容
若x1~x5满足下列方程组:
|
分析:本题的方程组为对称轮换式,把5个方程相加得x1+x2+x3+x4+x5=31,要求x4、x5,就分别与④⑤相减即可.
解答:解:①+②+③+④+⑤得6x1+6x2+6x3+6x4+6x5=186
解得x1+x2+x3+x4+x5=31 ⑥
④-⑥得:x4=17,
⑤-⑥得:x5=65,
∴3x4+2x5=3×17+2×65=181.
解得x1+x2+x3+x4+x5=31 ⑥
④-⑥得:x4=17,
⑤-⑥得:x5=65,
∴3x4+2x5=3×17+2×65=181.
点评:本题考查了代数式的求值,代数式中涉及的字母为方程组的未知数,虽然方程组比较复杂,但有一定的规律,需要观察规律求解.
练习册系列答案
相关题目