题目内容
如图,在平行四边形ABDC中,点M是CD的中点,AM与BC相交于点N,那么S△ACN:S四边形BDMN等于________.
2:5
分析:根据平行四边形性质得出AB=DC=2CM,根据△CMN∽△BAN,求出△CNM和△BNA的面积比是1:4,
=
,推出△ACN和△CAB的面积比是2:6,根据全等得出△ABC的面积和△DBC的面积相等,推出△ACN和△DBC的面积比是2:6,即可得出答案.
解答:∵四边形ABDC是平行四边形,
∴AB=CD,AB∥CD,
∵M为CD中点,
∴CD=2CM,
即AB=2CM,
∵AB∥CD,
∴△CMN∽△BAN,
∴△CNM和△BNA的面积比是1:4,
=
,
∴△CMN和△CAN的面积比是1:2,
即△ACN和△CAB的面积比是2:(2+4)=2:6,
∵四边形ABDC是平行四边形,
∴AC=BD,AB=CD,
在△ACB和△DBC中

∴△ACB≌△DBC(SSS),
∴△ABC的面积和△DBC的面积相等,
∴△ACN和△DBC的面积比是2:6,
即S△ACN:S四边形BDMN等于2:5,
故答案为:2:5.
点评:本题考查了三角形的面积,全等三角形的性质和判定,平行四边形的性质,相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方,等高的三角形的面积比等于对应边之比.
分析:根据平行四边形性质得出AB=DC=2CM,根据△CMN∽△BAN,求出△CNM和△BNA的面积比是1:4,
解答:∵四边形ABDC是平行四边形,
∴AB=CD,AB∥CD,
∵M为CD中点,
∴CD=2CM,
即AB=2CM,
∵AB∥CD,
∴△CMN∽△BAN,
∴△CNM和△BNA的面积比是1:4,
∴△CMN和△CAN的面积比是1:2,
即△ACN和△CAB的面积比是2:(2+4)=2:6,
∵四边形ABDC是平行四边形,
∴AC=BD,AB=CD,
在△ACB和△DBC中
∴△ACB≌△DBC(SSS),
∴△ABC的面积和△DBC的面积相等,
∴△ACN和△DBC的面积比是2:6,
即S△ACN:S四边形BDMN等于2:5,
故答案为:2:5.
点评:本题考查了三角形的面积,全等三角形的性质和判定,平行四边形的性质,相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方,等高的三角形的面积比等于对应边之比.
练习册系列答案
相关题目
| 2 |
| 3 |
| 5 |
| A、AC⊥BD |
| B、四边形ABCD是菱形 |
| C、△ABO≌△CBO |
| D、AC=BD |