题目内容
如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=( )
A. 90° B. 135° C. 270° D. 315°
-3的绝对值是:
A. - B. C. 3 D. -3
已知一次函数y=kx+b的图象经过一、二、四象限,则直线y=bx-k的图象可能是( )
如图,l为汀江河的南岸线,一天傍晚某牧童在A处放牛,欲将牛牵到河边饮水后再回到家B处,牧童想以最短的路程回家.请你在图中画出牛饮水C的位置.(保留痕迹)
如图,△ABC纸片DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是 ( )
A. ∠A=∠1+∠2 B. 2∠A=∠1+∠2
C. 3∠A=2∠1+∠2 D. 3∠A=2(∠1+∠2)
为丰富学生的学习生活,某校九年级1班组织学生参加春游活动,所联系的旅行社收费标准如下:
如果人数超过25人,每增加1人,人均活动费用降低2元,但人均活动费用不得低于75元.
如果人数不超过25人,人均活动费用为100元.
春游活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次春游活动?
已知一元二次方程ax2+bx+c=0(a≠0,b≠0)有一根是1,常数项为0,那么这个一元二次方程可以是 ________(只写符合条件的一个即可)
小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:
(1)小明总共剪开了_______条棱.
(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.
(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.
已知5x=3,5y=4,则5x+y的结果为( )
A. 7 B. 12 C. 13 D. 14