题目内容
如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长________.
在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。
(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明;
(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明。
直线y=kx+b经过点A(-2,0)和y轴的正半轴上一点B.如果△ABO(O为坐标原点)的面积为2,则b的值是________.
一次函数y=ax﹣a(a≠0)的大致图象是( )
A. B. C. D.
再求值: ,其中x=2sin60°-()-2.
一个多边形的内角和是它的外角的和的2倍,这个多边形的边数是__________
在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A. (―1,2) B. (―9,18) C. (―9,18)或(9,―18) D. (―1,2)或(1,―2)
分解因式:ax2-2ax+a .
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;