题目内容
甲乙两人同时登西山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山的速度是每分钟____米,乙在A地提速时距地面的高度b为____米;
(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式;
(3)登山多长时间时,乙追上了甲?此时乙距A地的高度为多少米?
(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式;
(3)登山多长时间时,乙追上了甲?此时乙距A地的高度为多少米?
解:(1)10,30;
(2)由图知:
,t=11,
∵C(0,100),D(11,300),
∴折线OAB的解析式:y乙=
;
(3)由
,解得
,
∴登山6.5分钟时乙追上甲,此时乙距A地高度为165-30=135(米)。
(2)由图知:
∵C(0,100),D(11,300),
∴折线OAB的解析式:y乙=
(3)由
∴登山6.5分钟时乙追上甲,此时乙距A地高度为165-30=135(米)。
练习册系列答案
相关题目