题目内容

如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=6,PB=2,PC=4,则∠BPC=
135
135
°.
分析:将△ACP绕C点旋转90°,根据旋转的性质可得出∠QPC=45°,根据勾股定理可证出∠PBQ=90°,从而可得出答案.
解答:解:将△ACP绕C点旋转90°,然后连接PQ,
由旋转的性质可知:CQ=CP=4,BQ=PA=6,∠QBC=∠PAC,
∴Rt△ACB∽Rt△PCQ,
又∵∠PCB+∠PCA=90°,
∴∠PCQ=∠QCB+∠BCP=∠PCB+∠PCA=90°,
∴PQ2=CQ2+CP2=32,且∠QPC=45°,
在△BPQ中,PB2+PQ2=4+32=36=BQ2
∴∠QPB=90°,
∴∠BPC=∠QPB+∠QPC=135°.
故答案为:135°.
点评:本题考查了等腰直角三角形及旋转的性质,难度很大,解答本题的关键是将△ABP正确的旋转.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网