题目内容
如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=( ).
A. B. C. D.
苏宁电器商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若苏宁电器商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
在平面直角坐标系中,若点P(x-2,x)在第二象限,则x的取值范围为( )
A.0<x<2 B.x<2 C.x>0 D.x>2
如图,在平面直角坐标系xOy中,⊙P与y轴相切于点C,⊙P的半径是4,直线y=x被⊙P截得的弦AB的长为,则点P的坐标为 .
如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是( ).
A. B.
C. D.
如图,抛物线y=+bx+c的对称轴为x=﹣1,该抛物线与x轴交于A、B两点,且A点坐标为(1,0),交y轴于C(0,3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标.
(2)试判断△BCD的形状,并予证明.
(3)在对称轴上是否存在一点P,使得△ACP为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
先化简,再求值:,其中x=3.
如图,已知抛物线与x轴交于A、B两点,与y轴交于点C.
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
比较大小: ﹣5;﹣|﹣2| ﹣(﹣2).