题目内容

如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为(  )

A.11 B. 10 C. 9 D. 8

 

【答案】

D.

【解析】

试题分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.

∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,

∴∠BAF=∠DAF,

∵AB∥DF,AD∥BC,

∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,

∴AB=BE=6,AD=DF=9,

∴△ADF是等腰三角形,△ABE是等腰三角形,

∵AD∥BC,

∴△EFC是等腰三角形,且FC=CE,

∴EC=FC=9﹣6=3,

在△ABG中,BG⊥AE,AB=6,BG=

∴AG==2,

∴AE=2AG=4,

∴△ABE的周长等于16,

又∵△CEF∽△BEA,相似比为1:2,

∴△CEF的周长为8.

故选D.

考点: 1.相似三角形的判定与性质;2.勾股定理;3.平行四边形的性质.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网