题目内容

如图所示,AB为⊙O的直径,P为AB延长线上一点,PD切⊙O于C,BC和AD的延长线相交于点E,且AB=AE。 (1)求证: (2)若圆的半径为1,△ABE是等边三角形,求BP的长.

【解析】(1)连OC,根据切线的性质得到OC⊥PD,又AB=AE,OC=OB,则∠2=∠E,∠1=∠2,得到∠1=∠E,则OC∥AE,即可得到结论;

(2)根据等边三角形的性质得∠A=60°,则∠COB=60°,则∠P=30°,再根据含30°的直角三角形三边的关系得到OP=2OC=2,从而求出BP

 

【答案】

(1)证明:连OC,如图,

∵PD切⊙O于C,

∴OC⊥PD,

∵AB=AE,

∴∠2=∠E,

而OC=OB,

∴∠1=∠2,

∴∠1=∠E,

∴OC∥AE,

∴AD⊥PD;

(2)解:∵△ABE是等边三角形,

∴∠A=60°,

∴∠COB=60°,

而∠OCP=90°,OB=OC=1,

∴∠P=30°,

∴OP=2OC=2,

∴BC=2-1=1.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网