题目内容
下列计算正确的是( )
A. a3﹣a2=a B. a2•a3=a6 C. (2a)2=4a2 D. a6÷a3=a2
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C(0,﹣4)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
将抛物线y=﹣3x2﹣1向右平移1个单位长度,再向上平移1个单位长度后所得的抛物线的解析式为( )
A.y=﹣3(x﹣1)2
B.y=﹣3(x+1)2
C.y=﹣3(x﹣1)2+2
D.y=﹣3(x﹣1)2﹣2
把大小完全相同的6个乒乓球分成两组,每组3个,每组乒乓球上面分别标有数字1,2,3,将这两组乒乓球分别放入两个盒子中搅匀,再从每个盒子中各随机取出1个乒乓球,请用画树状图(或列表)的方法,求取出的2个乒乓球上面数字之和为偶数的概率.
比较大小: 2 (填“<“,“=“或“>“).
如图,长方形OABC的顶点A、C、O都在坐标轴上,点B的坐标为(9,4),E为BC边上一点,CE=6.
(1)求点E的坐标和△ABE的周长;
(2)若P是OA上的一个动点,它以每秒1个单位长度的速度从点O出发沿射线OA运动,设点P运动的时间为t秒(t>0).
①当t为何值时,△PAE的面积等于△PCE的面积的一半;
②当t为何值时,△PAE为直角三角形.
计算:
(1);
(2).
(2015•赵县一模)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)求证:△COD是等边三角形;
(2)当a=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当a为多少度时,△AOD是等腰三角形?
一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为( ).
A.12π B.15π C.20π D.30π