题目内容
阅读下面材料:![]()
问题:如图①,在△ABC中, D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的长.
小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题得到解决.
(1)请你回答:图中BD的长为 ;
(2)参考小明的
思路,探究并解答问题:如图②,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的长.
![]()
图① 图②
解:(1)
. …………
…………………………………………………………1分
(2)把△ADC沿AC翻折,得△AEC,连接DE,
∴△ADC≌△AEC.
∴∠DAC=∠EAC,∠DCA=∠ECA, DC=EC.
∵∠BAD=∠BCA=2∠DAC=30°,
∴∠BAD=∠DAE=30°,∠DCE=60°.
∴△
CDE为等边三角形. ……………………2分
∴DC=DE.
在AE上截取AF=AB,连接DF,
∴△ABD≌△AFD.
∴BD=DF.
在△ABD中,∠ADB=∠DAC+∠DCA=45°,
∴∠ADE=∠AED =75°,∠ABD =105°.![]()
∴∠AFD =105°.
∴∠DFE=75°.
∴∠DFE=∠DEF.
∴DF=DE.
∴BD=DC=2. …………………………………………………………………3分
作BG⊥AD于点G,
∴在Rt△BDG中,
. ……………………………………………4分
∴在Rt△ABG中,
. ……………………………………………5分