题目内容

如图,?ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是


  1. A.
    60°
  2. B.
    65°
  3. C.
    70°
  4. D.
    75°
B
分析:由DE=2AB,可作辅助线:取DE中点O,连接AO,根据平行四边形的对边平行,易得△ADE是直角三角形,由直角三角形斜边上的中线是斜边的一半,即可得△ADO,△AOE,△AOB是等腰三角形,借助于方程求解即可.
解答:取DE中点O,连接AO,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAB=180°-∠ABC=105°,
∵AF⊥BC,
∴AF⊥AD,
∴∠DAE=90°,
∴OA=DE=OD=OE,
∵DE=2AB,
∴OA=AB,
∴∠AOB=∠ABO,∠ADO=∠DAO,∠AED=∠EAO,
∵∠AOB=∠ADO+∠DAO=2∠ADO,
∴∠ABD=∠AOB=2∠ADO,
∴∠ABD+∠ADO+∠DAB=180°,
∴∠ADO=25°,∠AOB=50°,
∵∠AED+∠EAO+∠AOB=180°,
∴∠AED=65°.
故选B.
点评:此题考查了直角三角形的性质(直角三角形斜边上的中线是斜边的一半)、平行四边形的性质(平行四边形的对边平行)以及等腰三角形的性质(等边对等角),解题的关键是注意方程思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网