题目内容
若y=,求(x+y)y的值.
如图,△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.
下列说法正确的是( )
A. 被开方数相同的二次根式可以合并 B. 与可以合并
C. 只有根指数为2的根式才能合并 D. 与不能合并
下列二次根式中,最简二次根式是( )
A. B. C. D.
先简化,再求值:
-,其中x=6.
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.
(1)试求抛物线的解析式;
(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;
(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.
如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是_____.
若的整数部分为,小数部分为,求的值.
如图1,在平面直角坐标系中,点O为坐标原点,点A(-1,0),点B(0, ).
(1)求∠BAO的度数;
(2)如图1,将△AOB绕点O顺时针旋转得△A′OB′,当点A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2,S1与S2有何关系?为什么?
(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.