题目内容

如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:
1
AD
=
1
AB
+
1
AC
精英家教网
分析:过D引DE∥AB,交AC于E,因为AD平分∠BAC(=120°),所以∠BAD=∠EAD=60°.若引DE∥AB,交AC于E,则△ADE为正三角形,从而AE=DE=AD,利用△CED∽△CAB,可实现求证的目标.
解答:精英家教网证明:过D引DE∥AB,交AC于E.
∵AD是∠BAC的平分线,∠BAC=120°,
∴∠BAD=∠CAD=60°.
又∠BAD=∠EDA=60°,
所以∴△ADE是正三角形,
∴EA=ED=AD.①
由于DE∥AB,所以△CED∽△CAB,
DE
AB
=
CE
CA
=
CA-AE
CA
=1-
AE
CA
.②
由①,②得
AD
AB
=1-
AD
AC

从而
1
AB
+
1
AC
=
1
AD
点评:本题考查了相似三角形对应边比值相等的性质,考查了相似三角形的判定,考查了等边三角形的判定,考查了角平分线的性质,本题中求证△CED∽△CAB是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网